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Universal Truths

Form factors give information about distribution of hadron’s

characterising properties amongst its QCD constituents.

Calculations at Q2 > 1GeV2 require a Poincaré-covariant

approach. Covariance requires existence of quark orbital

angular momentum in hadron’s rest-frame wave function.

DCSB is most important mass generating mechanism for

matter in the Universe. Higgs mechanism is irrelevant to

light-quarks.

Challenge: understand relationship between parton properties

on the light-front and rest frame structure of hadrons. Problem

because, e.g., DCSB - an established keystone of low-energy

QCD and the origin of constituent-quark masses - has not

been realised in the light-front formulation.
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Form Factors: Why?

The nucleon and pion hold special places in non-perturbative
studies of QCD.

An explanation of nucleon and pion structure and interactions is
central to hadron physics – they are respectively the archetypes
for baryons and mesons.

Form factors have long been recognized as a basic tool for
elucidating bound state properties. They can be studied from very
low momentum transfer, the region of non-perturbative QCD, up to
a region where perturbative QCD predictions can be tested.

Experimental and theoretical studies of nucleon electromagnetic
form factors have made rapid and significant progress during the
last several years, including new data in the time like region, and
material gains have been made in studying the pion form factor.

Despite this, many urgent questions remain unanswered.
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Some Questions

What is the role of pion cloud in nucleon
electromagnetic structure?

Can we understand the pion cloud in a more
quantitative and, perhaps, model-independent
way?
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Some Questions

Do we understand the high Q2 behavior of the
proton form factor ratio in the space-like region?

Can we make model-independent statements
about the role of relativity or orbital angular
momentum in the nucleon?
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Some Questions

Can we understand the rich structure of the
time-like proton form factors in terms of
resonances?

What do we expect for the proton form factor ratio
in the time-like region?

What is the relation between proton and neutron
form factor in the time-like region?

How do we understand the ratio between time-like
and space-like form factors?
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Some Questions

What is the role of two-photon exchange
contributions in understanding the discrepancy
between the polarization and Rosenbluth
measurements of the proton form factor ratio?

What is the impact of these contributions on other
form factor measurements?
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Some Questions

How accurately can the pion form factor be
extracted from the ep → e′nπ+ reaction?
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Status
Current status is described in

J. Arrington, C. D. Roberts and J. M. Zanotti
“Nucleon electromagnetic form factors,”
J. Phys. G 34, S23 (2007); [arXiv:nucl-th/0611050].

C. F. Perdrisat, V. Punjabi and M. Vanderhaeghen,
“Nucleon electromagnetic form factors,”
Prog. Part. Nucl. Phys. 59, 694 (2007);
[arXiv:hep-ph/0612014].
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J. Phys. G 34, S23 (2007); [arXiv:nucl-th/0611050].

C. F. Perdrisat, V. Punjabi and M. Vanderhaeghen,
“Nucleon electromagnetic form factors,”
Prog. Part. Nucl. Phys. 59, 694 (2007);
[arXiv:hep-ph/0612014].

Most recently:
“ECT∗ Workshop on Hadron Electromagnetic Form Factors”
Organisers: Alexandrou, Arrington, Friedrich, Maas, Roberts
Presentations, etc., available on-line
http://ect08.phy.anl.gov/
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Answer for the pion

Two → Infinitely many . . .
Handle that
properly in
quantum
field theory
. . .
momentum
-dependent
dressing
. . .
perceived
distribution of
mass depends
on the resolving scale
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Pion Form Factor

Solve Gap Equation
⇒ Dressed-Quark Propagator, S(p)

Σ
=

D

γ
ΓS
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Pion Form Factor

Use that to Complete Bethe Salpeter Kernel, K

Solve Homogeneous Bethe-Salpeter Equation for Pion
Bethe-Salpeter Amplitude, Γπ

Solve Inhomogeneous Bethe-Salpeter Equation for
Dressed-Quark-Photon Vertex, Γµ
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Pion Form Factor

Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor

Γπ(k;P )

Γµ(k;P )

S(p)
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Pion Form Factor

Now have all elements for Impulse Approximation to
Electromagnetic Pion Form factor

Γπ(k;P )

Γµ(k;P )

S(p)

Evaluate this final,
three-dimensional integral
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Calculated Pion Form Factor
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Timelike Pion Form Factor
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Ab initio calculation into timelike region
Deeper than ground-state ρ-meson pole
ρ-meson not put in “by hand” – generated dynamically as a bound-
state of dressed-quark and dressed-antiquark

Craig Roberts: Dyson Schwinger Equations and QCD

25th Students’ Workshop on Electromagnetic Interactions, 31/08 – 05/09, 2008. . . – p. 10/38



First Contents Back Conclusion

Dimensionless product: rπ fπ

Craig Roberts: Dyson Schwinger Equations and QCD

25th Students’ Workshop on Electromagnetic Interactions, 31/08 – 05/09, 2008. . . – p. 11/38



First Contents Back Conclusion

Dimensionless product: rπ fπ

Craig Roberts: Dyson Schwinger Equations and QCD

25th Students’ Workshop on Electromagnetic Interactions, 31/08 – 05/09, 2008. . . – p. 11/38



First Contents Back Conclusion

Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Craig Roberts: Dyson Schwinger Equations and QCD

25th Students’ Workshop on Electromagnetic Interactions, 31/08 – 05/09, 2008. . . – p. 11/38



First Contents Back Conclusion

Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Craig Roberts: Dyson Schwinger Equations and QCD

25th Students’ Workshop on Electromagnetic Interactions, 31/08 – 05/09, 2008. . . – p. 11/38



First Contents Back Conclusion

Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Great strides towards placing nucleon studies on same

footing as mesons
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Repeating Fπ(Q2) calculation

Experimentally: rπfπ = 0.315 ± 0.005

DSE prediction

Lattice results

– James Zanotti [UK QCD]

Fascinating result:

DSE and Lattice

– Experimental value

obtains independent of

current-quark mass.
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Dimensionless product: rπ fπ

Improved rainbow-ladder interaction

Repeating Fπ(Q2) calculation

Experimentally: rπfπ = 0.315 ± 0.005

DSE prediction

Fascinating result:

DSE and Lattice

– Experimental value

obtains independent of

current-quark mass.

We have understood this

Implications far-reaching.
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confinement interaction between light-quarks.

Move on to the problem of a symmetry preserving treatment

of hybrids and exotics.
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New Challenges

Another Direction . . . Also want/need information about

three-quark systems

With this problem . . . most wide-ranging studies employ

expertise familiar from meson applications circa ∼1995.

Namely . . . Model-building and Phenomenology,

constrained by the DSE results outlined already.
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Nucleon . . .
Three-body Problem?

What is the picture in quantum field theory?

Three →
infinitely
many!
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Faddeev equation

=
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q
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Γ−a

p
d

p
q

bΨ
P

q
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Faddeev equation

=
aΨ

P

p
q

p
d Γb

Γ−a

p
d

p
q

bΨ
P

q

Linear, Homogeneous Matrix equation

Yields wave function (Poincaré Covariant Faddeev

Amplitude) that describes quark-diquark relative motion

within the nucleon

Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest

Frame Amplitude has . . . s−, p− & d−wave correlations
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Diquark correlations

QUARK-QUARK
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Diquark correlations

QUARK-QUARK

Same interaction that

describes mesons also

generates three coloured

quark-quark correlations:

blue–red, blue–green,

green–red

Confined . . . Does not

escape from within baryon.

Scalar is isosinglet,

Axial-vector is isotriplet

DSE and lattice-QCD

m[ud]
0+

= 0.74 − 0.82

m(uu)
1+

= m(ud)
1+

= m(dd)
1+

= 0.95 − 1.02
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Nucleon EM Form Factors: A Précis
Höll, et al. : nu-th/0412046 & nu-th/0501033
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Cloët, et al. :
arXiv:0710.2059, arXiv:0710.5746 & arXiv:0804.3118

• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

Craig Roberts: Dyson Schwinger Equations and QCD

25th Students’ Workshop on Electromagnetic Interactions, 31/08 – 05/09, 2008. . . – p. 18/38

http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.2059
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0710.5746
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0804.3118


First Contents Back Conclusion

Nucleon EM Form Factors: A Précis
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Cloët, et al. :
arXiv:0710.2059, arXiv:0710.5746 & arXiv:0804.3118

• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H − M calc

H ]2

[M exp
H ]2

)1/2

= 2%

(Oettel, Hellstern, Alkofer, Reinhardt: nucl-th/9805054)
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• Interpreting expts. with GeV electromagnetic probes

requires Poincaré covariant treatment of baryons

⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)

Easily obtained:
(

1

NH

∑

H

[M exp
H − M calc

H ]2

[M exp
H ]2

)1/2

= 2%

• But is that good?

• Cloudy Bag: δM
π−loop
+ = −300 to −400 MeV!

• Critical to anticipate pion cloud effects

Roberts, Tandy, Thomas, et al., nu-th/02010084
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PV (P, k)∆π((P − k)2)

× γ · (P − k)γ5 G(k) γ · (P − k)γ5

= iγ · k [A(k2) − 1] + B(k2)

• Pseudovector coupling

• Completely equivalent to pseudoscalar coupling

IF that is treated completely

• Tadpole contribution can’t be neglected

(Hecht, Oettel, Roberts, Schmidt, Tandy, Thomas: nucl-th/0201084)
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Σ(P ) = 3

∫

d4k

(2π)4
g2
PV (P, k) ∆π((P − k)2)

× γ · (P − k)γ5 G(k) γ · (P − k)γ5

= iγ · k [A(k2) − 1] + B(k2)

gPV (P, k), πN vertex function

Calculated using Γπ and ΨN

Always soft: Monopole λ ∼ 0.6 GeV

Corresponds to range rλ ∼ 0.8 fm

. . . pion cloud does not

penetrate deeply within nucleon. 0.0 0.5 1.0 1.5
k (GeV)

0.0

0.2
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Σ(P ) = 3

∫

d4k

(2π)4
g2
PV (P, k)∆π((P − k)2)

× γ · (P − k)γ5 G(k) γ · (P − k)γ5

= iγ · k [A(k2) − 1] + B(k2)

G(k) = 1/[iγ · k + M + Σ(P )] Pole Position Not

= −iγ · k σV(k2) + σS(k2) Known a priori

Mass shift calculated via self-consistent solution
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Nucleon’s self-energy - pion loop

Σ(P ) = 3

∫

d4k

(2π)4
g2
PV (const.)∆π((P − k)2)

× γ · (P − k)γ5 G(k) γ · (P − k)γ5

= iγ · k [A(k2) − 1] + B(k2)

Obtain Integral Equation Kernels
∫

dΩk f((P − k)2) =
2

π

∫ 1

−1
dz
√

1 − z2 f(P 2 + k2 − 2Pkz)

E.g.
ωB(P 2, k2) =

∫

dΩk
(P − k)2

(P − k)2 + m2
π

= 1 − 2m2
π

a +
√

a2 − b2
,

a = P 2 + k2 + m2
π, b = 2Pk
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Σ(P ) = 3

∫

d4k

(2π)4
g2
PV (P, k)∆π((P − k)2)

× γ · (P − k)γ5 G(k) γ · (P − k)γ5

= iγ · k [A(k2) − 1] + B(k2)

But gPV = gPV (P 2, k2, P · k)

Therefore, In General, Kernel only known Numerically

Complicates analysis . . .

locating, incorporating poles in integrand
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Let’s look what happens when mπ → 0

Minkowski Space

Pseudovector Coupling

One-loop nucleon self energy

Σ(P) = 3i
g2

4M2

∫

d4k

(2π)4
∆(k2, m2

π) 6kγ5 G0(P − k) 6kγ5 .

This integral is divergent. Assume a Poincaré covariant regularisation,
characterised by a mass-scale λ
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Let’s look what happens when mπ → 0

Minkowski Space

Pseudovector Coupling

One-loop nucleon self energy

Σ(P) = 3i
g2

4M2

∫

d4k

(2π)4
∆(k2, m2

π) 6kγ5 G0(P − k) 6kγ5 .

This integral is divergent. Assume a Poincaré covariant regularisation,
characterised by a mass-scale λ

Decompose nucleon propagator into positive and negative energy components

G0(P ) =
1

6P − M0

= G+

0
(P ) + G−

0
(P )

=
M

ωN ( ~P )

[

Λ+( ~P )
1

P0 − ωN ( ~P ) + iε
+ Λ−( ~P )

1

P0 + ωN ( ~P ) − iε

]

(4)

ω2
N (~P) = ~P2 + M2, and Λ±(~P) = ( 6 P̃ ± M)/(2M), P̃ = (ω(~P), ~P)
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Σ(P) = 3i
g2

4M2

∫

d4k

(2π)4
∆(k2, m2

π) 6kγ5 G0(P − k) 6kγ5 .

Shift in the mass of a positive energy nucleon nucleon:

δM+ = 1
2
trD

[

Λ+(~P = 0) Σ(P0 = M, ~P = 0)
]
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4M2
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(2π)4
∆(k2, m2

π) 6kγ5 G0(P − k) 6kγ5 .

Shift in the mass of a positive energy nucleon nucleon:

δM+ = 1
2
trD

[

Λ+(~P = 0) Σ(P0 = M, ~P = 0)
]

Focus on positive energy nucleon’s contribution to the loop integral; i.e.,
∆(k) G+(P − k), which we denote: δF M

+
+
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One-loop nucleon self energy

Σ(P) = 3i
g2

4M2

∫

d4k

(2π)4
∆(k2, m2

π) 6kγ5 G0(P − k) 6kγ5 .

Shift in the mass of a positive energy nucleon nucleon:

δM+ = 1
2
trD

[

Λ+(~P = 0) Σ(P0 = M, ~P = 0)
]

Focus on positive energy nucleon’s contribution to the loop integral; i.e.,
∆(k) G+(P − k), which we denote: δF M

+
+

To evaluate k0 integral, close contour in lower half-plane, thereby encircling
only the positive-energy pion pole.

δF M
+
+ = −3g2

∫

d3k

(2π)3
ωN (~k2) − M0

4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(9)

Craig Roberts: Dyson Schwinger Equations and QCD

25th Students’ Workshop on Electromagnetic Interactions, 31/08 – 05/09, 2008. . . – p. 21/38



First Contents Back Conclusion

Nucleon Self Energy: Chiral Limit

Hecht, et al., nu-th/0201084

δF M
+
+ = −3g2

∫

d3k

(2π)3
ωN (~k2) − M0

4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(10)

Craig Roberts: Dyson Schwinger Equations and QCD

25th Students’ Workshop on Electromagnetic Interactions, 31/08 – 05/09, 2008. . . – p. 22/38



First Contents Back Conclusion

Nucleon Self Energy: Chiral Limit

Hecht, et al., nu-th/0201084

δF M
+
+ = −3g2

∫

d3k

(2π)3
ωN (~k2) − M0

4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(14)

On the domain for which the regularised integral has significant support, assume
that M0 is very much greater than all other mass scales.

ωN (~k2) − M ≈
~k2

2 M
(15)
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+
+ = −3g2

∫

d3k

(2π)3
ωN (~k2) − M0

4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(18)

On the domain for which the regularised integral has significant support, assume
that M0 is very much greater than all other mass scales.

ωN (~k2) − M ≈
~k2

2 M
(19)

Then δF M
+
+ ≈ −3g2

∫

d3k

(2π)3

~k2

8 M2

1

ω2
λi

(~k2)
(20)
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(2π)3
ωN (~k2) − M0

4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(22)

On the domain for which the regularised integral has significant support, assume
that M0 is very much greater than all other mass scales.

ωN (~k2) − M ≈
~k2

2 M
(23)

Then δF M
+
+ ≈ −3g2

∫

d3k

(2π)3

~k2

8 M2

1

ω2
λi

(~k2)
(24)

So that
d2 δF M

+
+

(dm2
π)2

≈ −
3g2

4M2

∫

d3k

(2π)3

~k2

ω6
π(~k2)

= −
9

128π

g2

M2

1

mπ
. (25)
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4 ωN (~k2)

1

ωπ(~k2) [ωπ(~k2) + ωN (~k2) − M0]
(26)

On the domain for which the regularised integral has significant support, assume
that M0 is very much greater than all other mass scales.

ωN (~k2) − M ≈
~k2

2 M
(27)

Then δF M
+
+ ≈ −3g2

∫

d3k

(2π)3

~k2

8 M2

1

ω2
λi

(~k2)
(28)

So that
d2 δF M

+
+

(dm2
π)2

≈ −
3g2

4M2

∫

d3k

(2π)3

~k2

ω6
π(~k2)

= −
9

128π

g2

M2

1

mπ
. (29)

Namely δF M
+
+ = −

3

32π

g2

M2
m3

π + f
+
(1)

(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

where the last two terms express the necessary contribution from the regulator.
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+
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3

32π
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+
(1)

(λ1, λ2) m2
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M2
m3
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+
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(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

Given that m2
π ∝ m̂ in the neighbourhood of the chiral limit, the m3

π is
nonanalytic in the current-quark mass on this domain.
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+
(1)

(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

Given that m2
π ∝ m̂ in the neighbourhood of the chiral limit, the m3

π is
nonanalytic in the current-quark mass on this domain.

This is the Leading Nonanalytic Contribution much touted in effective field
theory.

Its form is completely fixed by chiral symmetry and the pattern of its
dynamical breaking.

NB. Contribution from negative energy nucleon is ∝
1

M3
.
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Nucleon’s self energy

δF M
+
+ = −

3

32π

g2

M2
m3

π + f
+
(1)

(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

Given that m2
π ∝ m̂ in the neighbourhood of the chiral limit, the m3

π is
nonanalytic in the current-quark mass on this domain.

This is the Leading Nonanalytic Contribution much touted in effective field
theory.

Its form is completely fixed by chiral symmetry and the pattern of its
dynamical breaking.

NB. Contribution from negative energy nucleon is ∝
1

M3
.

The remaining terms are regular in the current-quark mass. Their exact nature
depends on the explicit form of regularisation procedure.
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Given that m2
π ∝ m̂ in the neighbourhood of the chiral limit, the m3

π is
nonanalytic in the current-quark mass on this domain.

The Leading Nonanalytic Contribution is a model-independent result.
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Nucleon Self Energy: Chiral Limit

Hecht, et al., nu-th/0201084

Nucleon’s self energy

δF M
+
+ = −

3

32π

g2

M2
m3

π + f
+
(1)

(λ1, λ2) m2
π + f

+
(0)

(λ1, λ2)

Given that m2
π ∝ m̂ in the neighbourhood of the chiral limit, the m3

π is
nonanalytic in the current-quark mass on this domain.

The Leading Nonanalytic Contribution is a model-independent result.

Unfortunately, it is of limited relevance. In a calculation of the nucleon’s mass, the
actual value of the pion loop’s contribution is almost completely determined by the
regularisation dependent terms.

It is essential for a framework to veraciously express the leading nonanalytic
contribution . . . it serves as a check that DCSB is truly described.

However, beyond that, one must accept that the world is complex.
The pion has a finite size. So does the nucleon.
These sizes set the mass-scale which determines the nucleon’s mass
shift.
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Model pion-nucleon coupling

gPV (P, k) =
g

2M
exp(−(P − k)2/Λ2)
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Model pion-nucleon coupling

gPV (P, k) =
g

2M
exp(−(P − k)2/Λ2)

• B-Kernel
∫

dΩk g2
PV ((P − k)2)

[

1 − 2m2
π

(P − k)2 + m2
π

]

Clearly the sum of two independent terms.
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Model pion-nucleon coupling

gPV (P, k) =
g

2M
exp(−(P − k)2/Λ2)

• B-Kernel
∫

dΩk g2
PV ((P − k)2)

[

1 − 2m2
π

(P − k)2 + m2
π

]

• First term can be evaluated exactly

ḡ2
PV (P 2, k2) =

∫

dΩk g2
PV ((P − k)2)

=
g2

4M2
e−2(P 2+k2)/Λ2 Λ2

2Pk
I1(4Pk/Λ2) ,
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Model pion-nucleon coupling

gPV (P, k) =
g

2M
exp(−(P − k)2/Λ2)

• B-Kernel
∫

dΩk g2
PV ((P − k)2)

[

1 − 2m2
π

(P − k)2 + m2
π

]

• Second term can be approximated

ωg2(P 2, k2) = 2m2
π

∫

dΩk
g2
PV ((P − k)2)

(P − k)2 + m2
π

≈ g2
PV (|P − k|2) 2m2

π

a +
√

a2 − b2

• Reliable when analytic

structure of gPV is not key to that of solution
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Model pion-nucleon coupling

gPV (P, k) =
g

2M
exp(−(P − k)2/Λ2)

• B-Kernel
∫

dΩk g2
PV ((P − k)2)

[

1 − 2m2
π

(P − k)2 + m2
π

]

• Total Kernel:

≈ ḡ2
PV (P 2, k2) − g2

PV (|P 2 − k2|) 2m2
π

a +
√

a2 − b2
,

=: ḡ2
PV (P 2, k2) − g̃2

PV (P 2, k2))
2m2

π

a +
√

a2 − b2
,

• Analytic structure is transparent
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M

• Vector self energy
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M

• Scalar self energy
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M

(Λ,ΛN ) (Λ,ΛN ) (Λ,ΛN )

(0.9,∞) (0.9, 1.5) (0.9, 2.0)

− δM (MeV) 222 61 99
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M

(Λ,ΛN ) (Λ,ΛN ) (Λ,ΛN )

(0.9,∞) (0.9, 1.5) (0.9, 2.0)

− δM (MeV) 222 61 99

No suppression for nucleon off-shell in self-energy loop;

i.e, gPV ((P − k2), P 2, k2)

Neglected this dependence
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M

(Λ,ΛN ) (Λ,ΛN ) (Λ,ΛN )

(0.9,∞) (0.9, 1.5) (0.9, 2.0)

− δM (MeV) 222 61 99

gPV (P 2, k2, P · k) =
g

2M
e−(P−k)2/Λ2

e−(P 2+M2+k2+M2)/Λ2
N

Correct on-shell limit:

gPV (P 2 = −M2, k2 = −M2, (P − k)2 = 0) =
g

2M
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Nucleon’s self energy and mass shift

• Solve DSE Nonperturbatively

M2
DA2(−M2

D) = [M + B(−M2
D)]2

δM = MD − M Range from meson
exchange model phen.

(Λ,ΛN ) (Λ,ΛN ) (Λ,ΛN )

(0.9,∞) (0.9, 1.5) (0.9, 2.0)

− δM (MeV) 222 61 99

gPV (P 2, k2, P · k) =
g

2M
e−(P−k)2/Λ2

e−(P 2+M2+k2+M2)/Λ2
N

ΛN → ∞ ⇒ pointlike nucleon
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Pion loop’s effect

Nonpointlike πN -loop

. . . reduces nucleon’s mass by ∼ 100 MeV
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Pion loop’s effect

Nonpointlike πN -loop

. . . reduces nucleon’s mass by ∼ 100 MeV

There’s also a π∆-loop

. . . reduces nucleon’s mass by not more than 100 MeV

−δMN ∼ 200 MeV

Qualitative effect of this?
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Too much of a good thing

• Refit Faddeev model parameters,

allowing for heavier “quark-core” mass
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Too much of a good thing

ω0+ ω1+ MN M∆ ωf1
ωf2

R

0+ 0.45 - 1.44 - 0.36 0.35 2.32

0+ & 1+ 0.45 1.36 1.14 1.33 0.44 0.36 0.54

0+ 0.64 - 1.59 - 0.39 0.41 1.28

0+ & 1+ 0.64 1.19 0.94 1.23 0.49 0.44 0.25

50% reduction in role of axial-vector diquark
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ω0+ ω1+ MN M∆ ωf1
ωf2

R

0+ 0.45 - 1.44 - 0.36 0.35 2.32

0+ & 1+ 0.45 1.36 1.14 1.33 0.44 0.36 0.54

0+ 0.64 - 1.59 - 0.39 0.41 1.28

0+ & 1+ 0.64 1.19 0.94 1.23 0.49 0.44 0.25

50% reduction in role of axial-vector diquark

10% increase in role of scalar diquark
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Too much of a good thing

ω0+ ω1+ MN M∆ ωf1
ωf2

R

0+ 0.45 - 1.44 - 0.36 0.35 2.32

0+ & 1+ 0.45 1.36 1.14 1.33 0.44 0.36 0.54

0+ 0.64 - 1.59 - 0.39 0.41 1.28

0+ & 1+ 0.64 1.19 0.94 1.23 0.49 0.44 0.25

Unsurprisingly:

Requiring Exact Fit to N , ∆ masses

with only q, (qq)JP Degrees of Freedom

⇒ Forces 1+ to mimic, in part, effect of π
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Pseudoscalar mesons
and Form Factors

Light mass of pseudoscalar mesons means they play a very

important role in many aspects of hadron physics.
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important role in many aspects of hadron physics.

Indeed, no approach to low-energy hadron physics that

does not explicitly account for pseudoscalar meson degrees

of freedom can be valid.
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important role in many aspects of hadron physics.

Indeed, no approach to low-energy hadron physics that

does not explicitly account for pseudoscalar meson degrees

of freedom can be valid.

Another example . . . pseudoscalar mesons also contribute

materially to form factors.
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Pseudoscalar mesons
and Form Factors

Light mass of pseudoscalar mesons means they play a very

important role in many aspects of hadron physics.

Indeed, no approach to low-energy hadron physics that

does not explicitly account for pseudoscalar meson degrees

of freedom can be valid.

Another example . . . pseudoscalar mesons also contribute

materially to form factors.

Illustrate with γN → ∆ transition form factor. Focus on the

M1 (spin-flip) form factor, G∗
M(Q2).
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Harry Lee
Pions and Form Factors

Dynamical coupled-channels model . . . Analyzed extensive JLab
data . . . Completed a study of the ∆(1236)

Meson Exchange Model for πN Scattering and γN → πN Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

Dynamical Study of the ∆ Excitation in N(e, e′π) Reactions, T. Sato and
T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)
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Dynamical coupled-channels model . . . Analyzed extensive JLab
data . . . Completed a study of the ∆(1236)

Meson Exchange Model for πN Scattering and γN → πN Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

Dynamical Study of the ∆ Excitation in N(e, e′π) Reactions, T. Sato and
T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)

Pion cloud effects are large in the low Q2 region.
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Q2(GeV/c)2

Dressed
Bare

Ratio of the M1 form factor in γN → ∆

transition and proton dipole form factor GD .
Solid curve is G∗

M
(Q2)/GD(Q2) including

pions; Dotted curve is GM (Q2)/GD(Q2)

without pions.
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Harry Lee
Pions and Form Factors

Dynamical coupled-channels model . . . Analyzed extensive JLab
data . . . Completed a study of the ∆(1236)

Meson Exchange Model for πN Scattering and γN → πN Reaction, T. Sato
and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

Dynamical Study of the ∆ Excitation in N(e, e′π) Reactions, T. Sato and
T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)

Pion cloud effects are large in the low Q2 region.

0

1

2

3

0 1 2 3 4

Q2(GeV/c)2

Dressed
Bare

Ratio of the M1 form factor in γN → ∆

transition and proton dipole form factor GD .
Solid curve is G∗

M
(Q2)/GD(Q2) including

pions; Dotted curve is GM (Q2)/GD(Q2)

without pions.

Quark Core

Responsible for only 2/3 of
result at small Q2

Dominant for Q2 >2 – 3 GeV2
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Results: Nucleon
and ∆ Masses

Mass-scale parameters (in GeV)

for the scalar and axial-vector

diquark correlations, fixed by

fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “π-cloud” contributions

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)

B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV
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Results: Nucleon
and ∆ Masses

Mass-scale parameters (in GeV)

for the scalar and axial-vector

diquark correlations, fixed by

fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “π-cloud” contributions

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)

B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV

Axial-vector diquark provides significant attraction
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Results: Nucleon
and ∆ Masses

Mass-scale parameters (in GeV)

for the scalar and axial-vector

diquark correlations, fixed by

fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “π-cloud” contributions

set MN M∆ m0+ m1+ ω0+ ω1+

A 0.94 1.23 0.63 0.84 0.44=1/(0.45 fm) 0.59=1/(0.33 fm)

B 1.18 1.33 0.80 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV

Constructive Interference: 1++-diquark + ∂µπ
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Nucleon-Photon Vertex

M. Oettel, M. Pichowsky
and L. von Smekal, nu-th/9909082

6 terms . . .
constructed systematically . . . current conserved automatically

for on-shell nucleons described by Faddeev Amplitude
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Nucleon-Photon Vertex

M. Oettel, M. Pichowsky
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factors

Explaining the high Q2 behavior of the proton form factor
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